KDTreeFindPointsWithinRadiusDemo

VTKExamples/Cxx/DataStructures/KDTreeFindPointsWithinRadiusDemo


Description

This example uses vtkKdTreePointLocator to find all points within a given radius. The example generates "n" spheres and finds all the points within the radius of the spheres. The input vtkPolyData's vtkPointData is set the the radius value of each sphere.

The example takes one or two arguments. The first argument specifies the input file that contains vtkPolyData. The second optional argument specifies the number of radii use. If the number is < 6, the vtkSphereSource will be displayed as concentric translucent spheres.

The image was produced with this command:

KDTreeFindPointsWithinRadius dragon.ply 10

To see the translucent spheres run:

KDTreeFindPointsWithinRadius dragon.ply

Question

If you have a simple question about this example contact us at VTKExamplesProject If your question is more complex and may require extended discussion, please use the VTK Discourse Forum

Code

KDTreeFindPointsWithinRadiusDemo.cxx

#include <vtkActor.h>
#include <vtkCamera.h>
#include <vtkPolyDataMapper.h>
#include <vtkProperty.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkRenderer.h>

#include <vtkCellArray.h>
#include <vtkDoubleArray.h>
#include <vtkIdList.h>
#include <vtkKdTreePointLocator.h>
#include <vtkPointData.h>
#include <vtkPointSource.h>
#include <vtkPoints.h>
#include <vtkPolyData.h>

#include <vtkLookupTable.h>
#include <vtkNamedColors.h>
#include <vtkSmartPointer.h>

// Readers
#include <vtkBYUReader.h>
#include <vtkOBJReader.h>
#include <vtkPLYReader.h>
#include <vtkPolyDataReader.h>
#include <vtkSTLReader.h>
#include <vtkXMLPolyDataReader.h>

#include <vtkSphereSource.h>

#include <algorithm> // For transform()
#include <array>
#include <cctype> // For to_lower
#include <iostream>
#include <string> // For find_last_of()

namespace {
vtkSmartPointer<vtkPolyData> ReadPolyData(std::string const& fileName);

// Templated join which can be used on any combination
//  of streams, and a container of base types.
template <typename TStream, typename TContainer, typename TSeparator>
TStream& join(TStream& stream, TContainer const& cont,
              TSeparator const& separator)
{
  auto sep = false;
  for (auto const& p : cont)
  {
    if (sep)
      stream << separator;
    else
    {
      sep = true;
    }
    stream << p;
  }
  // As a convenience, return a reference to the passed stream.
  return stream;
}

} // namespace

int main(int argc, char* argv[])
{
  if (argc < 2)
  {
    std::cout << "Usage: " << argv[0] << " shark.ply [number of radii] "
              << std::endl;
    return EXIT_FAILURE;
  }

  int numberOfRadii = 5;
  if (argc > 2)
  {
    numberOfRadii = std::atoi(argv[2]);
  }
  // Read the polydata
  auto polyData = ReadPolyData(argc > 1 ? argv[1] : "");

  // Compute bounds and range
  std::array<double, 6> bounds;
  polyData->GetBounds(bounds.data());
  std::cout << "Bounds: ";
  join(std::cout, bounds, ", ") << std::endl;
  std::array<double, 3> range;
  range[0] = bounds[1] - bounds[0];
  range[1] = bounds[3] - bounds[2];
  range[2] = bounds[5] - bounds[4];
  std::cout << "Range: ";
  join(std::cout, range, ", ") << std::endl;

  // double maxRange = std::max({range[0], range[1], range[2]});
  double minRange = std::min({range[0], range[1], range[2]});

  // Define a sphere at one edge of bounding box
  auto sphereSource = vtkSmartPointer<vtkSphereSource>::New();
  sphereSource->SetCenter(range[0] / 2.0 + bounds[0],
                          range[1] / 2.0 + bounds[2], bounds[5]);
  sphereSource->SetRadius(minRange);
  sphereSource->SetPhiResolution(31);
  sphereSource->SetThetaResolution(31);
  sphereSource->SetStartPhi(90.0);
  sphereSource->Update();

  // Initialize the locator
  auto pointTree = vtkSmartPointer<vtkKdTreePointLocator>::New();
  pointTree->SetDataSet(polyData);
  pointTree->BuildLocator();

  // Compute the radius for each call to FindPointsWithinRadius
  std::vector<double> radii;
  double radiiStart = .25 * sphereSource->GetRadius();
  double radiiEnd = 1.0 * sphereSource->GetRadius();
  double radiiDelta = (radiiEnd - radiiStart) / (numberOfRadii - 1);

  for (int r = 0; r < numberOfRadii; ++r)
  {
    radii.push_back(radiiStart + radiiDelta * r);
  }

  // Create an array to hold the scalar point data
  auto scalars = vtkSmartPointer<vtkDoubleArray>::New();
  scalars->SetNumberOfComponents(1);
  scalars->SetNumberOfTuples(polyData->GetNumberOfPoints());
  scalars->FillComponent(0, 0.0);

  // Process each radii from largest to smallest
  for (std::vector<double>::reverse_iterator rIter = radii.rbegin();
       rIter != radii.rend(); ++rIter)
  {
    auto result = vtkSmartPointer<vtkIdList>::New();
    pointTree->FindPointsWithinRadius(*rIter, sphereSource->GetCenter(),
                                      result);
    vtkIdType k = result->GetNumberOfIds();
    std::cout << k << " points within " << *rIter << " of "
              << sphereSource->GetCenter()[0] << ", "
              << sphereSource->GetCenter()[1] << ", "
              << sphereSource->GetCenter()[2] << std::endl;
    // Store the distance in the points withnin the current radius
    for (vtkIdType i = 0; i < k; i++)
    {
      vtkIdType point_ind = result->GetId(i);
      scalars->SetTuple1(point_ind, *rIter);
    }
  }
  polyData->GetPointData()->SetScalars(scalars);

  // Visualize
  auto colors = vtkSmartPointer<vtkNamedColors>::New();

  auto renderer = vtkSmartPointer<vtkRenderer>::New();

  auto lut = vtkSmartPointer<vtkLookupTable>::New();
  lut->SetHueRange(.667, 0.0);
  lut->SetNumberOfTableValues(radii.size() + 1);
  lut->SetRange(*radii.begin(), *radii.rbegin());
  lut->Build();

  // Create a transluscent sphere for each radii
  if (radii.size() < 6)
  {
    for (std::vector<double>::reverse_iterator rIter = radii.rbegin();
         rIter != radii.rend(); ++rIter)
    {
      auto radiiSource = vtkSmartPointer<vtkSphereSource>::New();
      radiiSource->SetPhiResolution(31);
      radiiSource->SetThetaResolution(31);
      radiiSource->SetStartPhi(90.0);
      radiiSource->SetRadius(*rIter);
      radiiSource->SetCenter(range[0] / 2.0 + bounds[0],
                             range[1] / 2.0 + bounds[2], bounds[5]);

      auto radiiMapper = vtkSmartPointer<vtkPolyDataMapper>::New();
      radiiMapper->SetInputConnection(radiiSource->GetOutputPort());

      auto backProp = vtkSmartPointer<vtkProperty>::New();
      backProp->SetDiffuseColor(colors->GetColor3d("LightGrey").GetData());

      auto radiiActor = vtkSmartPointer<vtkActor>::New();
      radiiActor->SetMapper(radiiMapper);
      radiiActor->GetProperty()->SetDiffuseColor(
          colors->GetColor3d("White").GetData());
      radiiActor->GetProperty()->SetOpacity(.1);
      radiiActor->SetBackfaceProperty(backProp);

      renderer->AddActor(radiiActor);
    }
  }

  // Display the original poly data
  auto mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
  mapper->SetInputData(polyData);
  mapper->SetLookupTable(lut);
  mapper->SetScalarRange(*radii.begin(), *radii.rbegin());

  auto actor = vtkSmartPointer<vtkActor>::New();
  actor->SetMapper(mapper);
  actor->GetProperty()->SetDiffuseColor(
      colors->GetColor3d("Crimson").GetData());
  actor->GetProperty()->SetInterpolationToFlat();

  auto renderWindow = vtkSmartPointer<vtkRenderWindow>::New();
  renderWindow->SetSize(640, 480);
  renderWindow->AddRenderer(renderer);

  auto renderWindowInteractor =
      vtkSmartPointer<vtkRenderWindowInteractor>::New();
  renderWindowInteractor->SetRenderWindow(renderWindow);

  renderer->AddActor(actor);
  renderer->SetBackground(colors->GetColor3d("BurlyWood").GetData());
  renderer->UseHiddenLineRemovalOn();

  renderWindow->Render();

  // Pick a good view
  renderer->GetActiveCamera()->Azimuth(-30);
  renderer->GetActiveCamera()->Elevation(30);
  renderer->GetActiveCamera()->Dolly(1.25);
  renderer->ResetCameraClippingRange();
  renderWindow->Render();

  renderWindowInteractor->Start();

  return EXIT_SUCCESS;
}

namespace {
vtkSmartPointer<vtkPolyData> ReadPolyData(std::string const& fileName)
{
  vtkSmartPointer<vtkPolyData> polyData;
  std::string extension = "";
  if (fileName.find_last_of(".") != std::string::npos)
  {
    extension = fileName.substr(fileName.find_last_of("."));
  }
  // Make the extension lowercase
  std::transform(extension.begin(), extension.end(), extension.begin(),
                 ::tolower);
  if (extension == ".ply")
  {
    auto reader = vtkSmartPointer<vtkPLYReader>::New();
    reader->SetFileName(fileName.c_str());
    reader->Update();
    polyData = reader->GetOutput();
  }
  else if (extension == ".vtp")
  {
    auto reader = vtkSmartPointer<vtkXMLPolyDataReader>::New();
    reader->SetFileName(fileName.c_str());
    reader->Update();
    polyData = reader->GetOutput();
  }
  else if (extension == ".obj")
  {
    auto reader = vtkSmartPointer<vtkOBJReader>::New();
    reader->SetFileName(fileName.c_str());
    reader->Update();
    polyData = reader->GetOutput();
  }
  else if (extension == ".stl")
  {
    auto reader = vtkSmartPointer<vtkSTLReader>::New();
    reader->SetFileName(fileName.c_str());
    reader->Update();
    polyData = reader->GetOutput();
  }
  else if (extension == ".vtk")
  {
    auto reader = vtkSmartPointer<vtkPolyDataReader>::New();
    reader->SetFileName(fileName.c_str());
    reader->Update();
    polyData = reader->GetOutput();
  }
  else if (extension == ".g")
  {
    auto reader = vtkSmartPointer<vtkBYUReader>::New();
    reader->SetGeometryFileName(fileName.c_str());
    reader->Update();
    polyData = reader->GetOutput();
  }
  else
  {
    // Return a polydata sphere if the extension is unknown.
    auto source = vtkSmartPointer<vtkSphereSource>::New();
    source->SetThetaResolution(20);
    source->SetPhiResolution(11);
    source->Update();
    polyData = source->GetOutput();
  }
  return polyData;
}
} // namespace

CMakeLists.txt

cmake_minimum_required(VERSION 3.3 FATAL_ERROR)

project(KDTreeFindPointsWithinRadiusDemo)

find_package(VTK COMPONENTS 
  vtkCommonColor
  vtkCommonCore
  vtkCommonDataModel
  vtkFiltersSources
  vtkIOGeometry
  vtkIOLegacy
  vtkIOPLY
  vtkIOXML
  vtkInteractionStyle
  vtkRenderingContextOpenGL2
  vtkRenderingCore
  vtkRenderingFreeType
  vtkRenderingGL2PSOpenGL2
  vtkRenderingOpenGL2 QUIET)
if (NOT VTK_FOUND)
  message("Skipping KDTreeFindPointsWithinRadiusDemo: ${VTK_NOT_FOUND_MESSAGE}")
  return ()
endif()
message (STATUS "VTK_VERSION: ${VTK_VERSION}")
if (VTK_VERSION VERSION_LESS "8.90.0")
  # old system
  include(${VTK_USE_FILE})
  add_executable(KDTreeFindPointsWithinRadiusDemo MACOSX_BUNDLE KDTreeFindPointsWithinRadiusDemo.cxx )
  target_link_libraries(KDTreeFindPointsWithinRadiusDemo PRIVATE ${VTK_LIBRARIES})
else ()
  # include all components
  add_executable(KDTreeFindPointsWithinRadiusDemo MACOSX_BUNDLE KDTreeFindPointsWithinRadiusDemo.cxx )
  target_link_libraries(KDTreeFindPointsWithinRadiusDemo PRIVATE ${VTK_LIBRARIES})
  # vtk_module_autoinit is needed
  vtk_module_autoinit(
    TARGETS KDTreeFindPointsWithinRadiusDemo
    MODULES ${VTK_LIBRARIES}
    )
endif () 

Download and Build KDTreeFindPointsWithinRadiusDemo

Click here to download KDTreeFindPointsWithinRadiusDemo and its CMakeLists.txt file. Once the tarball KDTreeFindPointsWithinRadiusDemo.tar has been downloaded and extracted,

cd KDTreeFindPointsWithinRadiusDemo/build 

If VTK is installed:

cmake ..

If VTK is not installed but compiled on your system, you will need to specify the path to your VTK build:

cmake -DVTK_DIR:PATH=/home/me/vtk_build ..

Build the project:

make

and run it:

./KDTreeFindPointsWithinRadiusDemo

WINDOWS USERS

Be sure to add the VTK bin directory to your path. This will resolve the VTK dll's at run time.