DisplacementPlot

VTKExamples/Python/VisualizationAlgorithms/DisplacementPlot


Description

This example shows modal lines for a vibrating rectangular beam. The vibration mode in this figure is the second torsional mode, clearly indicated by the crossing modal lines.

The default color scheme shows cool color for maximum negative motion, warm color maximum positive motion, with white at the nodes.

For other possible color maps see: [Diverging Color Maps for Scientific Visualization] (http://www.kennethmoreland.com/color-maps/).

Code

DisplacementPlot.py

#!/usr/bin/env python

# Translated from dispPlot.tcl

import vtk


def main():
    file_name, color_scheme = get_program_parameters()

    color_scheme = abs(color_scheme)
    if color_scheme > 2:
        color_scheme = 0

    colors = vtk.vtkNamedColors()

    # Read a vtk file
    #
    plate = vtk.vtkPolyDataReader()
    plate.SetFileName(file_name)
    plate.SetVectorsName("mode8")
    plate.Update()

    warp = vtk.vtkWarpVector()
    warp.SetInputConnection(plate.GetOutputPort())
    warp.SetScaleFactor(0.5)

    normals = vtk.vtkPolyDataNormals()
    normals.SetInputConnection(warp.GetOutputPort())

    color = vtk.vtkVectorDot()
    color.SetInputConnection(normals.GetOutputPort())

    lut = vtk.vtkLookupTable()
    MakeLUT(color_scheme, lut)

    plateMapper = vtk.vtkDataSetMapper()
    plateMapper.SetInputConnection(color.GetOutputPort())
    plateMapper.SetLookupTable(lut)
    plateMapper.SetScalarRange(-1, 1)

    plateActor = vtk.vtkActor()
    plateActor.SetMapper(plateMapper)

    # Create the RenderWindow, Renderer and both Actors
    #
    ren = vtk.vtkRenderer()
    renWin = vtk.vtkRenderWindow()
    renWin.AddRenderer(ren)

    iren = vtk.vtkRenderWindowInteractor()
    iren.SetRenderWindow(renWin)

    # Add the actors to the renderer, set the background and size
    #
    ren.AddActor(plateActor)
    ren.SetBackground(colors.GetColor3d("Wheat"))
    renWin.SetSize(512, 512)

    ren.GetActiveCamera().SetPosition(13.3991, 14.0764, 9.97787)
    ren.GetActiveCamera().SetFocalPoint(1.50437, 0.481517, 4.52992)
    ren.GetActiveCamera().SetViewAngle(30)
    ren.GetActiveCamera().SetViewUp(- 0.120861, 0.458556, - 0.880408)
    ren.GetActiveCamera().SetClippingRange(12.5724, 26.8374)
    # Render the image.
    renWin.Render()

    iren.Start()


def get_program_parameters():
    import argparse
    description = 'Produce figure 6–15(b) from the VTK Textbook.'
    epilogue = '''
        Produce figure 6–15(b) from the VTK Textbook.
        Surface plot of a vibrating plane.

        The color_scheme option allows you to select a series of colour schemes.
        0: The default:- cool maximum negative motion, warm maximum positive motion, white at the nodes.
        1: An alternative:- green maximum negative motion, purple maximum positive motion, white at the nodes.
        2: The original:- white at maximum motion, black at the nodes.

   '''
    parser = argparse.ArgumentParser(description=description, epilog=epilogue)
    parser.add_argument('filename', help='plate.vtk.')
    parser.add_argument('color_scheme', default=0, type=int, nargs='?', help='The particular color scheme to use.')
    args = parser.parse_args()
    return args.filename, args.color_scheme


def MakeLUT(colorScheme, lut):
    # See: [Diverging Color Maps for Scientific Visualization]
    #      (http:#www.kennethmoreland.com/color-maps/)
    nc = 256
    ctf = vtk.vtkColorTransferFunction()

    if colorScheme == 1:
        # Green to purple diverging.
        ctf.SetColorSpaceToDiverging()
        ctf.AddRGBPoint(0.0, 0.085, 0.532, 0.201)
        ctf.AddRGBPoint(1.0, 0.436, 0.308, 0.631)
        lut.SetNumberOfTableValues(nc)
        lut.Build()
        for i in range(0, nc):
            rgb = list(ctf.GetColor(float(i) / nc))
            rgb.append(1.0)
            lut.SetTableValue(i, *rgb)
    elif colorScheme == 2:
        # Make a lookup table, black in the centre with bright areas
        #   at the beginning and end of the table.
        # This is from the original code.
        nc2 = nc / 2.0
        lut.SetNumberOfColors(nc)
        lut.Build()
        for i in range(0, int(nc2)):
            # White to black.
            v = (nc2 - i) / nc2
            lut.SetTableValue(i, v, v, v, 1)
        for i in range(int(nc2), nc):
            # Black to white.
            v = (i - nc2) / nc2
            lut.SetTableValue(i, v, v, v, 1)
    else:
        # Cool to warm diverging.
        ctf.SetColorSpaceToDiverging()
        ctf.AddRGBPoint(0.0, 0.230, 0.299, 0.754)
        ctf.AddRGBPoint(1.0, 0.706, 0.016, 0.150)
        lut.SetNumberOfTableValues(nc)
        lut.Build()
        for i in range(0, nc):
            rgb = list(ctf.GetColor(float(i) / nc))
            rgb.append(1.0)
            lut.SetTableValue(i, *rgb)


if __name__ == '__main__':
    main()