# WarpCombustor

VTKExamples/Python/VisualizationAlgorithms/WarpCombustor

### Description¶

This example demonstrates how to extract "computational planes" from a structured dataset. Structured data has a natural, logical coordinate system based on i-j-k indices. Specifying imin,imax, jmin,jmax, kmin,kmax pairs can indicate a point, line, plane, or volume of data.

In this example, we extract three planes and warp them using scalar values in the direction of the local normal at each point. This gives a sort of "velocity profile" that indicates the nature of the flow.

Other Languages

See (Cxx)

Question

### Code¶

WarpCombustor.py

#!/usr/bin/env python

"""
"""

import vtk

def main():
colors = vtk.vtkNamedColors()

fileName1, fileName2 = get_program_parameters()

# Here we read data from a annular combustor. A combustor burns fuel and air
# in a gas turbine (e.g., a jet engine) and the hot gas eventually makes its
# way to the turbine section.
#
pl3d.SetXYZFileName(fileName1)
pl3d.SetQFileName(fileName2)
pl3d.SetScalarFunctionNumber(100)
pl3d.SetVectorFunctionNumber(202)
pl3d.Update()

pl3dOutput = pl3d.GetOutput().GetBlock(0)

# Planes are specified using a imin,imax, jmin,jmax, kmin,kmax coordinate
# specification. Min and max i,j,k values are clamped to 0 and maximum value.
#
plane = vtk.vtkStructuredGridGeometryFilter()
plane.SetInputData(pl3dOutput)
plane.SetExtent(10, 10, 1, 100, 1, 100)

plane2 = vtk.vtkStructuredGridGeometryFilter()
plane2.SetInputData(pl3dOutput)
plane2.SetExtent(30, 30, 1, 100, 1, 100)
plane3 = vtk.vtkStructuredGridGeometryFilter()
plane3.SetInputData(pl3dOutput)
plane3.SetExtent(45, 45, 1, 100, 1, 100)

# We use an append filter because that way we can do the warping, etc. just
# using a single pipeline and actor.
#
appendF = vtk.vtkAppendPolyData()

warp = vtk.vtkWarpScalar()
warp.SetInputConnection(appendF.GetOutputPort())
warp.UseNormalOn()
warp.SetNormal(1.0, 0.0, 0.0)
warp.SetScaleFactor(2.5)

normals = vtk.vtkPolyDataNormals()
normals.SetInputConnection(warp.GetOutputPort())
normals.SetFeatureAngle(60)

planeMapper = vtk.vtkPolyDataMapper()
planeMapper.SetInputConnection(normals.GetOutputPort())
planeMapper.SetScalarRange(pl3dOutput.GetScalarRange())

planeActor = vtk.vtkActor()
planeActor.SetMapper(planeMapper)

# The outline provides context for the data and the planes.
outline = vtk.vtkStructuredGridOutlineFilter()
outline.SetInputData(pl3dOutput)

outlineMapper = vtk.vtkPolyDataMapper()
outlineMapper.SetInputConnection(outline.GetOutputPort())

outlineActor = vtk.vtkActor()
outlineActor.SetMapper(outlineMapper)
outlineActor.GetProperty().SetColor(colors.GetColor3d("Black"))

# Create the usual graphics stuff.
#
ren1 = vtk.vtkRenderer()
renWin = vtk.vtkRenderWindow()

iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)

ren1.SetBackground(colors.GetColor3d("Silver"))
renWin.SetSize(640, 480)

# Create an initial view.
ren1.GetActiveCamera().SetClippingRange(3.95297, 50)
ren1.GetActiveCamera().SetFocalPoint(8.88908, 0.595038, 29.3342)
ren1.GetActiveCamera().SetPosition(-12.3332, 31.7479, 41.2387)
ren1.GetActiveCamera().SetViewUp(0.060772, -0.319905, 0.945498)
iren.Initialize()

# Render the image.
#
renWin.Render()
iren.Start()

def get_program_parameters():
import argparse
description = 'Extract "computational planes" from a structured dataset. '
epilogue = '''

'''
parser = argparse.ArgumentParser(description=description, epilog=epilogue,
formatter_class=argparse.RawDescriptionHelpFormatter)